Kinetix 3d Studio Max 3.1

Posted on by  admin

Presentation on theme: 'Modeling and Animation with 3DS MAX R 3.1 Graphics Lab. Korea Univ. Reference URL :'— Presentation transcript:

1 Modeling and Animation with 3DS MAX R 3.1 Graphics Lab. Korea Univ. Reference URL :

2 3D Studio Max

3 Features & Benefits Modeling & Animating tool by Kinetix. Used various fields such as character animation, game development, and visual effects production. User friendly interface and easy to use. Object oriented design - Objects in Max are analogous to objects in C++ (We can approach by programming plugins) High quality. Many artists use.

4 Menu Bar Tab Panel Command Panel Orthographic Viewports Perspective Viewport Viewport Control

5 Section #1 Modeling

6 Create Button Creation Parameters Object Type Creation parameters for BOX include length, width, height, and numbers of segments in each of the three directions.

7 Modifying Object Click on “Modify” button to right of “Create” button. Click on the “Bend” modifier and adjust the angle to your liking.

8 Box does not appear to be bent, because not enough segments are used to display it.

9 Select “Box” on the Modifier Stack drop down menu. Change the numbers of segments in the creation parameters.

10 Switch to “Wire Frame” view so we can see the segments.

11 Now add a twist modifier and choose the twist angle.

12 This is not what you wanted. Edit the modifier stack to put the twist before the bend.

13 Use cut and paste to put the twist modifier before the bend modifier.


15 Modifier Stack Record of sequence modeling operations: –Earliest operations on bottom of stack. –Latest operations on top of stack. Allows user to return to earlier operations and change the way they were done. The user may, delete and re-order operations on the stack.

16 Section #2 Editing

17 Converting a Parameterized Object to an Editable Mesh Create a sphere. Add a “Mesh Select” modifier. Indicate “Select by Vertices”.

18 At this level of the modifier stack, the object is a mesh composed of vertices, faces and edges. It is not a parameterized sphere object.

19 Editing an Editable Mesh Go to an orthographic viewport. Click on the “Select Object” arrow on the Main Toolbar. Drag a box around the vertices in the upper hemisphere.


21 Editing Editable Mesh Add an Xform modifier, under “More” on the Command Menu. Choose “Non-Uniform Scaling” on Main Toolbar. Choose “Parent” coordinate system on Main Toolbar. Choose “Transform Coordinate Center” on Main Toolbar.

22 Non-Uniform Scaling Parent Coordinate System Transform Coordinate Center Constrain to Y Axis

23 Max Provides Lots of Options for Controlling Transformations Choice of coordinate system: World, Parent, Local, etc. (Determines coordinate axies.) Choice of “Pivot”: Object’s own pivot, Selected objects’ collective pivot, Center of coordinate system. (Determines centers of scaling and rotation.) Constraining action to lie along one or two named axies.

24 Adjust view using viewport controls.

25 Material and Texture Mapping Click “Material Editor” above the control pannel. A editor window appears. You can choose shading modes, specular amount, colors, opacity etc. Click a small button beside of diffuse color. A window opens. Double click “Bitmap” at the top of the lists. File selection window will appear. Choose texture file. Click “Assign Material to Selection” button to assign texture and click “Show Map in Viewport”

26 Assign to Material to Selection Show Map in Viewport

27 Section #3 Animation

28 Linked Object Animation Draw 3 cylinders at the front viewport. and select one at the top of three. Click on “Select and Link” at the right side of “Redo” Button. Drag mouse to middle cylinder. Select middle cylinder and drag to bottom cylinder as same before. Try to move or rotate each cylinders. Click Hierarchy Tab on Control Pannel and click “Affect Pivot Only” and move each cylinders pivot to desired position.


30 Linked Object Animation Click “Affect Pivot Only” once again to disable pivot mode. Try to rotate or move each cylinder then you will see how the linked hierarchy is constructed. Activate Front viewport and select bottom cylinder. Click “Animate” button and move Time Slide Bar to frame 50. Rotate cylinder about 45 degree. (or right click on the “Select and Rotate” button to input value manually) It means that cylinder moves 0~45 degree in 50 frames. Move Time Slide Bar to frame 100(You can see previous cylinder moves) and rotate cylinder about –45 degree.( or any value you want ) Do the same above with other cylinders. Click Play button at the right side of Animate button and see how linked cylinders move.


32 Assignment # One Rigid Object (Save as.max) # One Linked Object (Save as.max) # One Screen Shot for Rigid Object # Four Screen Shots for Linked Object Animation (ex : frame 0, 35, 65, 100) * 2.max files & 5 image files

33 Homework #1 Due to 3/26 PM 12:00 (3/27 AM 0:00) Build 2 object without animation follow. * Car, Airplane, Ship, Building etc.(not linked) * Jointed Robot-like object. (Don’t be pressed to make humanoids. Whatever linked thing you want.) With Robot, assign pivot and animate. (Snake, Bipedal, 4-legged, Industrial Robots etc.) Option For non-Robotic object, animate with 3 controllers each. * Bezier, TCB, Path

Jump to navigationJump to search
Autodesk 3ds Max
Developer(s)Autodesk, Inc.
Initial release1996; 23 years ago
Stable release
Operating systemWindows 7 or later
Available inEnglish, German, French, Brazilian Portuguese, Japanese, Chinese, Korean
Type3D computer graphics
LicenseSoftware as a service, Trialware

Autodesk 3ds Max, formerly 3D Studio and 3D Studio Max, is a professional 3D computer graphics program for making 3D animations, models, games and images. It is developed and produced by Autodesk Media and Entertainment.[1] It has modeling capabilities and a flexible plugin architecture and can be used on the Microsoft Windows platform. It is frequently used by video game developers, many TV commercial studios and architectural visualization studios. It is also used for movie effects and movie pre-visualization. For its modeling and animation tools, the latest version[which?] of 3ds Max also features shaders (such as ambient occlusion and subsurface scattering), dynamic simulation, particle systems, radiosity, normal map creation and rendering, global illumination, a customizable user interface, new icons, and its own scripting language.[2]

  • 1History
  • 4Modeling techniques
  • 5Predefined primitives


The original 3D Studio product was created for the DOS platform by Gary Yost and the Yost Group, and published by Autodesk. The release of 3D Studio made Autodesk's previous 3D rendering package AutoShade obsolete. After 3D Studio DOS Release 4, the product was rewritten for the Windows NT platform, and renamed '3D Studio MAX'. This version was also originally created by the Yost Group. It was released by Kinetix, which was at that time Autodesk's division of media and entertainment.

Autodesk purchased the product at the second release update of the 3D Studio MAX version and internalized development entirely over the next two releases. Later, the product name was changed to '3ds max' (all lower case) to better comply with the naming conventions of Discreet, a Montreal-based software company which Autodesk had purchased.

When it was re-released (release 7), the product was again branded with the Autodesk logo, and the short name was again changed to '3ds Max' (upper and lower case), while the formal product name became the current 'Autodesk 3ds Max'.[3]

Version history[edit]

VersionCodenameYearOperating systemHardware platform
3D Studio PrototypeTHUD1988MS-DOS16-bit x86
3D StudioTHUD1990
3D Studio 21992
3D Studio 31993
3D Studio 41994
3D Studio MAX 1.0Jaguar1996Windows NT 3.51, Windows NT 4.0IA-32
3D Studio MAX R2Athena1997Windows 95 and Windows NT 4.0
3D Studio MAX R3Shiva1999
Discreet 3dsmax 4Magma2000Windows 98, Windows ME, Windows 2000[4]
Discreet 3dsmax 5Luna2002Windows 2000 and Windows XP
Discreet 3dsmax 6Granite2003
Discreet 3dsmax 7Catalyst2004
Autodesk 3ds Max 8Vesper2005
Autodesk 3ds Max 9Makalu2006IA-32 and x64
Autodesk 3ds Max 2008Gouda2007Windows XP and Windows Vista
Autodesk 3ds Max 2009Johnson2008
Autodesk 3ds Max 2010Renoir2009
Autodesk 3ds Max 2011Zelda2010Windows XP, Windows Vista and Windows 7
Autodesk 3ds Max 2012Excalibur / Rampage2011
Autodesk 3ds Max 2013SimCity2012Windows XP and Windows 7
Autodesk 3ds Max 2014Tekken2013Windows 7x64
Autodesk 3ds Max 2015Elwood2014Windows 7 and Windows 8
Autodesk 3ds Max 2016Phoenix2015Windows 7, Windows 8 and Windows 8.1
Autodesk 3ds Max 2017Kirin2016Windows 7, Windows 8, Windows 8.1 and Windows 10
Autodesk 3ds Max 2018Imoogi2017
Autodesk 3ds Max 2019Neptune2018
Autodesk 3ds Max 2020Athena2019


MAXScript is a built-in scripting language that can be used to automate repetitive tasks, combine existing functionality in new ways, develop new tools and user interfaces, and much more. Plugin modules can be created entirely within MAXScript.
Character Studio
Character Studio was a plugin which since version 4 of Max is now integrated in 3D Studio Max; it helps users to animate virtual characters. The system works using a character rig or 'Biped' skeleton which has stock settings that can be modified and customized to fit the character meshes and animation needs. This tool also includes robust editing tools for IK/FK switching, Pose manipulation, Layers and Keyframing workflows, and sharing of animation data across different Biped skeletons. These 'Biped' objects have other useful features that help accelerate the production of walk cycles and movement paths, as well as secondary motion.
Scene Explorer
Scene Explorer, a tool that provides a hierarchical view of scene data and analysis, facilitates working with more complex scenes. Scene Explorer has the ability to sort, filter, and search a scene by any object type or property (including metadata). Added in 3ds Max 2008, it was the first component to facilitate .NET managed code in 3ds Max outside of MAXScript.
DWG import
3ds Max supports both import and linking of DWG files. Improved memory management in 3ds Max 2008 enables larger scenes to be imported with multiple objects.
Texture assignment/editing
3ds Max offers operations for creative texture and planar mapping, including tiling, mirroring, decals, angle, rotate, blur, UV stretching, and relaxation; Remove Distortion; Preserve UV; and UV template image export. The texture workflow includes the ability to combine an unlimited number of textures, a material/map browser with support for drag-and-drop assignment, and hierarchies with thumbnails. UV workflow features include Pelt mapping, which defines custom seams and enables users to unfold UVs according to those seams; copy/paste materials, maps and colors; and access to quick mapping types (box, cylindrical, spherical).
General keyframing
Two keying modes — set key and auto key — offer support for different keyframing workflows.
Fast and intuitive controls for keyframing — including cut, copy, and paste — let the user create animations with ease. Animation trajectories may be viewed and edited directly in the viewport.
Constrained animation
Objects can be animated along curves with controls for alignment, banking, velocity, smoothness, and looping, and along surfaces with controls for alignment. Weight path-controlled animation between multiple curves, and animate the weight. Objects can be constrained to animate with other objects in many ways — including look at, orientation in different coordinate spaces, and linking at different points in time. These constraints also support animated weighting between more than one target.
All resulting constrained animation can be collapsed into standard keyframes for further editing.
Either the Skin or Physique modifier may be used to achieve precise control of skeletal deformation, so the character deforms smoothly as joints are moved, even in the most challenging areas, such as shoulders. Skin deformation can be controlled using direct vertex weights, volumes of vertices defined by envelopes, or both. Capabilities such as weight tables, paintable weights, and saving and loading of weights offer easy editing and proximity-based transfer between models, providing the accuracy and flexibility needed for complicated characters.
The rigid bind skinning option is useful for animating low-polygon models or as a diagnostic tool for regular skeleton animation.
Additional modifiers, such as Skin Wrap and Skin Morph, can be used to drive meshes with other meshes and make targeted weighting adjustments in tricky areas.
Skeletons and inverse kinematics (IK)
Characters can be rigged with custom skeletons using 3ds Max bones, IK solvers, and rigging tools powered by Motion Capture Data.
All animation tools — including expressions, scripts, list controllers, and wiring — can be used along with a set of utilities specific to bones to build rigs of any structure and with custom controls, so animators see only the UI necessary to get their characters animated. Four plug-in IK solvers ship with 3ds Max: history-independent solver, history-dependent solver, limb solver, and spline IK solver. These powerful solvers reduce the time it takes to create high-quality character animation. The history-independent solver delivers smooth blending between IK and FK animation and uses preferred angles to give animators more control over the positioning of affected bones. The history-dependent solver can solve within joint limits and is used for machine-like animation. IK limb is a lightweight two-bone solver, optimized for real-time interactivity, ideal for working with a character arm or leg. Spline IK solver provides a flexible animation system with nodes that can be moved anywhere in 3D space. It allows for efficient animation of skeletal chains, such as a character's spine or tail, and includes easy-to-use twist and roll controls.
Integrated Cloth solver
In addition to reactor's cloth modifier, 3ds Max software has an integrated cloth-simulation engine that enables the user to turn almost any 3D object into clothing and even build garments from scratch. Collision solving is fast and accurate even in complex simulations. Local simulation lets artists drape cloth in real time to set up an initial clothing state before setting animation keys.
Cloth simulations can be used in conjunction with other 3ds Max dynamic forces, such as Space Warps. Multiple independent cloth systems can be animated with their own objects and forces. Cloth deformation data can be cached to the hard drive to allow for nondestructive iterations and to improve playback performance.
Integration with Autodesk Vault
Autodesk Vault plug-in, which ships with 3ds Max, consolidates users' 3ds Max assets in a single location, enabling them to automatically track files and manage work in progress. Users can easily and safely find, share, and reuse 3ds Max (and design) assets in a large-scale production or visualization environment.
Max Creation Graph
Introduced with Max 2016, Max Creation Graph (MCG) enables users to create modifiers, geometry, and utility plug-ins using a visual node-based workflow.
With MCG you can create a new plug-in for 3ds Max in minutes by simply wiring together parameter nodes, computation nodes, and output nodes. The resulting graph can then be saved in an XML file (.maxtool) or be packaged with any compounds (.maxcompound) it depends on in a ZIP file (.mcg) which you can share easily with 3ds Max users.


Further information: List of films made with Autodesk 3ds Max

Many films have made use of 3ds Max, or previous versions of the program under previous names, in CGI animation, such as Avatar and 2012, which contain computer generated graphics from 3ds Max alongside live-action acting. Mudbox was also used in the final texturing of the set and characters in Avatar, with 3ds Max and Mudbox being closely related.

3ds Max has been used in the development of 3D computer graphics for a number of video games.

Architectural and engineering design firms use 3ds Max for developing concept art and previsualization. 3ds Max shares a close resemblance to AutoCAD.

Educational programs at secondary and tertiary level use 3ds Max in their courses on 3D computer graphics and computer animation. Students in the FIRST competition for 3d animation are known to use 3ds Max.

Modeling techniques[edit]

Polygon modeling[edit]

Polygon modeling is more common with game design than any other modeling technique as the very specific control over individual polygons allows for extreme optimization. Usually, the modeler begins with one of the 3ds max primitives, and using such tools as bevel and extrude, adds detail to and refines the model. Versions 4 and up feature the Editable Polygon object, which simplifies most mesh editing operations, and provides subdivision smoothing at customizable levels (see NURMS).

Version 7 introduced the edit poly modifier, which allows the use of the tools available in the editable polygon object to be used higher in the modifier stack (i.e., on top of other modifications).

NURBS in 3dsmax is a 'legacy feature' none of the features were ever updated since version 4 and have been ignored by the development teams over the past decade. for example the updated path deform and the updated normalize spline modifiers in version 2018 do NOT work on nurbs curves anymore (they did in previous versions).

NURBS (Non-Uniform Rational B-Splines)[edit]

An alternative to polygons, it gives a smoothed out surface that eliminates the straight edges of a polygon model. NURBS is a mathematically exact representation of freeform surfaces like those used for car bodies and ship hulls, which can be exactly reproduced at any resolution whenever needed. Advance auto parts. With NURBS, a smooth sphere can be created with only one face.

Brilliant people ) 2. bpm was one of my favorite, and it is open source also! It's work flow engine ( o, perhaps u do not know what i mean, i have ever one point in my life that i am so passionate towards BPM,Business Process Management, from there learn so much about UML, Agile Methodology, Work flow engine and some of the good one such as intalio www. It's Fully customizable interface 3. Program aplikasi penjualan dan pembelian toko buku.

The non-uniform property of NURBS brings up an important point. Because they are generated mathematically, NURBS objects have a parameter space in addition to the 3D geometric space in which they are displayed. Specifically, an array of values called knots specifies the extent of influence of each control vertex (CV) on the curve or surface. Knots are invisible in 3D space and you can't manipulate them directly, but occasionally their behavior affects the visible appearance of the NURBS object. Parameter space is one-dimensional for curves, which have only a single U dimension topologically, even though they exist geometrically in 3D space. Surfaces have two dimensions in parameter space, called U and V.[5]

NURBS curves and surfaces have the important properties of not changing under the standard geometric affine transformations (Transforms), or under perspective projections. The CVs have local control of the object: moving a CV or changing its weight does not affect any part of the object beyond the neighboring CVs. (You can override this property by using the Soft Selection controls). Also, the control lattice that connects CVs surrounds the surface. This is known as the convex hull property.[6]

Surface tool/editable patch object[edit]

Surface tool was originally a 3rd party plugin, but Kinetix acquired and included this feature since version 3.0.[citation needed] The surface tool is for creating common 3ds Max splines, and then applying a modifier called 'surface.' This modifier makes a surface from every three or four vertices in a grid. It is often seen as an alternative to 'mesh' or 'nurbs' modeling, as it enables a user to interpolate curved sections with straight geometry (for example a hole through a box shape). Although the surface tool is a useful way to generate parametrically accurate geometry, it lacks the 'surface properties' found in the similar Edit Patch modifier, which enables a user to maintain the original parametric geometry whilst being able to adjust 'smoothing groups' between faces.[citation needed]

Mar 26, 2014 - and unpack it to a folder (for example, D: Hirens. BootCD.15.2 HBCDCustomizer.exe, follow steps A-D as shown on the. Jan 17, 2018 - I will show you how to download Hiren's Boot CD 15.2 and how to prepare a memory stick with Hiren's Boot. Hiren's Boot is the most used tool. Hiren's boot usb windows 8.

Predefined primitives[edit]

This is a basic method, in which one models something using only boxes, spheres, cones, cylinders and other predefined objects from the list of Predefined Standard Primitives or a list of Predefined Extended Primitives. One may also apply boolean operations, including subtract, cut and connect. For example, one can make two spheres which will work as blobs that will connect with each other. These are called metaballs.[7]

Some of the 3ds Max Primitives as they appear in the wireframe view of 3ds Max 9
3ds Max Standard Primitives: Box (top right), Cone (top center), Pyramid (top left), Sphere (bottom left), Tube (bottom center) and Geosphere (bottom right)
3ds Max Extended Primitives: Torus Knot (top left), ChamferCyl (top center), Hose (top right), Capsule (bottom left), Gengon (bottom, second from left), OilTank (bottom, second from right) and Prism (bottom right)

Standard primitives[edit]

Box:Produces a rectangular prism. An alternative variation of box calledCub proportionally constrains the length, width, and height of the box.
Cylinder:Produces a cylinder.
Torus:Produces a torus – or a ring – with a circular cross section, sometimes referred to as a doughnut.
Teapot:Produces a Utah teapot. Since the teapot is a parametric object, the user can choose which parts of the teapot to display after creation. These parts include the body, handle, spout and lid. Primarily used to test shaders (rendering settings).
Cone:Produces upright or inverted cones.
Sphere:Produces a full sphere, semi-sphere, or other portion of a sphere.
Tube:Produces round or prismatic tubes. The tube is similar to the cylinder with a hole in it.
Pyramid:Produces a pyramid with a square or rectangular base and triangular sides.
Plane:Produces a special type of flat polygon mesh that can be enlarged by any amount at render time. The user can specify factors to magnify the size or number of segments or both. Modifiers such as displace can be added to a plane to simulate a hilly terrain.
Geosphere:Produces spheres and hemispheres based on three classes of regular polyhedrons.

Extended primitives[edit]

Hedra:Produces objects from several families of polyhedra.
ChamferBox:Produces a box with beveled or rounded edges.
OilTank:Creates a cylinder with convex caps.
Spindle:Creates a cylinder with conical caps.
Gengon:Creates an extruded, regular-sided polygon with optionally filleted side edges.
Prism:Creates a three-sided prism with independently segmented sides.
Torus knot:Creates a complex or knotted torus by drawing 2D curves in the normal planes around a 3D curve. The 3D curve (called the Base Curve) can be either a circle or a torus knot. It can be converted from a torus knot object to a NURBS surface.
ChamferCyl:Creates a cylinder with beveled or rounded cap edges.
Capsule:Creates a cylinder with hemispherical caps.
L-Ex:Creates an extruded L-shaped object.
C-Ext:Creates an extruded C-shaped object.
Hose:Creates a flexible object, similar to a spring.


Scanline rendering
The default rendering method in 3DS Max is scanline rendering. Several advanced features have been added to the scanliner over the years, such as global illumination, radiosity, and ray tracing.
ART Renderer
Autodesk Raytracer Renderer (ART) is a CPU-only, physically based renderer for architectural, product, and industrial design renderings and animations. It is integrated into 3ds Max as of version 2017.
mental ray
mental ray is a third-party renderer using bucket rendering, a technique that allows distributing the rendering task for a single image between several computers. Since 3ds Max 2018, mental ray is no longer shipped with 3ds Max and needs to be obtained directly from NVIDIA.
A third party connection tool to RenderMan pipelines is also available for those that need to integrate Max into Renderman render farms. Used by Pixar for rendering several of their CGI animated films.
A third-party render engine plug-in for 3D Studio MAX.
Brazil R/S
A third-party photorealistic rendering system. It is capable of fast ray tracing and global illumination.
A third party hybrid GPU+CPU interactive, unbiased ray tracer, based on Nvidia CUDA.
Indigo Renderer
A third-party photorealistic renderer with plugins for 3ds Max.
Maxwell Render
A third-party photorealistic rendering system providing materials and unbiased rendering.
Octane Render
A third party unbiased GPU ray tracer with plugins for 3ds Max, based on Nvidia CUDA.
An open-source ray tracer supporting 3ds Max, Cinema 4D, Softimage, and Blender. Focuses on photorealism by simulating real light physics as much as possible.
Arnold is an unbiased, physically based, unidirectional path-tracing renderer.
Corona Renderer
A third-party unbiased,physically based render engine plug-in for 3D Studio MAX.
A third-party real-time WebGL renderer for 3ds Max.


Earlier versions (up to and including 3D Studio Max R3.1) required a special copy protection device (called a dongle) to be plugged into the parallel port while the program was run, but later versions incorporated software based copy prevention methods instead. Current versions require online registration.

Due to the high price of the commercial version of the program, Autodesk also offers a free student version, which explicitly states that it is to be used for 'educational purposes only'. The student version has identical features to the full version, but is only for single use and cannot be installed on a network. The student license expires after three years, at which time the user, if they are still a student, may download the latest version, thus renewing the license for another three years.

See also[edit]


  1. ^'Autodesk 3D Design, Engineering & Entertainment Software' November 21, 2013
  2. ^'Autodesk 3ds Max — Detailed Features', March 25, 2008
  3. ^History of Autodesk 3ds MaxArchived October 24, 2015, at the Wayback Machine
  4. ^,3ds-max-4.aspx
  5. ^'NURBS Curves and Surfaces', November 22, 2013
  6. ^'Why is the Convex Hull property so important, November 22, 2013
  7. ^'Metaballs/Blobby Objects', November 22, 2013

External links[edit]

Wikimedia Commons has media related to 3DStudioMax.
Wikibooks has a book on the topic of: Autodesk 3ds Max
  • 3D Studio Max at Curlie

Retrieved from ''
Hidden categories:

Comments are closed.